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Würzburg, a beautiful city in the middle of 
Germany

• Würzburg is located in the 
northern part of Bavaria. 

• The region: Franken

• Population: 130,000 

• Students: 24,300

Würzburg is famous for:
• Wine (Wine producer of the year:

Weingut Horst Sauer)
• And Dirk Nowitzki



Department of physics and astronomy: An 
overview 

Klaus von Klitzing
Nobel Prize 1985
(Quantum Hall effect)

Wilhelm C. Röntgen
Nobel Prize 1901
(X-rays)

Department of physics and astronomy

8 experimental physics chairs
5 theoretical physics chairs
+ several experimental and theoretical groups 



Motivation: Stochastic resonance (SR), a noise 
enhanced information transfer process

• Stochastic resonance: Weak 
signals can be enhanced by 
fluctuations (for a review Ref.[1])

• Ingredients:
– Noise
– Sub-threshold signal
– Non-linear system, e.g. bistable 

systems
• SR as model was introduced to 

explain the periodic recurrences of 
ice ages: Benzi, Parisi, Sutera, 
Vulpiani [2]

• SR has been found in various 
systems, e.g. in crayfish 
mechanoreceptors [3]

[1] L. Gammaitoni et al., “Stochastic resonance”, Reviews of Modern Physics, Vol. 70, No. 1, January 1998
[2] Benzi, R., G. Parisi, A. Sutera, and A. Vulpiani, 1982, Tellus 34, 10.
[3] Douglass, J. K., L. Wilkens, E. Pantazelou, and F. Moss, 1993, Nature (London) 365, 337.



Electron microscope images of a human hair and 
a micro-pillar (fabricated @ our department)

1 µm

1 µm

J.P. Reithmaier et al., „Strong 
coupling in a single quantum 
dot–semiconductor microcavity
system“, Nature 432, 197-200 
(11 November 2004).

Motivation: A human hair is still a macroscopic 
“device”



• Growth, fabrication and transport properties of nan oelectronic 
devices
– Growth of 2DEGs and fabrication of electron waveguides.
– Growth and fabrication of resonant tunneling diodes (RTD).  

• Universal logic gate switching in resonant tunnelin g diodes (RTDs)  
– Universal logic gate switching => NOR to NAND 
– Logic stochastic resonance (LSR)

• Stochastic resonance in nanoelectronic devices
– SR in electron waveguides
– SR in RTDs for ac and periodic optical modulation

• Noise activated nonlinear dynamic sensors 
– Magnetic field sensor based on (bistable) electron waveguides

• Energy harvesting: The quantum harvester class
– Transport as a consequence of state dependent diffusion.
– Optimal energy to quanta conversion: A coupled QD system.

Outline



• Modulation doped GaAs/AlGaAs heterostructure (HEMT).

• Grown by molecular beam epitaxy.

• High mobility µ = 1.1*106 cm2/Vs and charge density n = 3.7*1011cm-2

Growth of high mobility two dimensional 
electron gases based on AlGaAs/GaAs
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Fabrication of electron waveguides and other 
nanoelectronic devices

• Samples are grown by molecular beam epitaxy.
• Electron beam or optical lithography.
• Evaporating the etching mask (e.g. Cr) & Lift-off. 
• Remove the etching mask (HNO3)

• Resist (e.g. positive PMMA).
• Development of the resist. 
• Wet or dry chemical etching 

(e.g. ECR-RIE) 
DONE!! (plus contacts)



Growth and fabrication of trench etched and 
three terminal resonant tunneling diodes (RTDs)

• Dry chemical etching is used to define RTD 
mesas from 12 µm down to 50 nm.

• BCB (polymer) for mesa isolation.
• Top Au/Ti/Ni contact. 

• RTDs based on the GaAs material system with
AlGaAs/GaAs/AlGaAs double barriers.



Resonant tunneling diodes (RTDs): Tunable 
bistability via the load line effect
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• Growth, fabrication and transport properties of nan oelectronic 
devices
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� Noise induced signal trains

� Mean value is efficiently 
controlled by input signals

� Can be integrated to arrays

� No classical kT limit of 
transconductance

Reconfigurable logic universal gates: Noise 
induced firing rates in RTDs 

� Electron microscopy images of a trench 
etched RTD with diameter d = 600 nm

� Branches serve as logical inputs



Switching voltages: V1 = V2 = 0mV

Vac = 23 mV Vac = 25 mV

Reconfigurable logic universal gates: NOR and 
NAND configurations



Switching voltages: V1 = 0, 2 mV V2 = 2, 0 mV

Vac = 23 mV Vac = 27 mV

Reconfigurable logic universal gates: NOR and 
NAND configurations



Switching voltages: V1 = V2 = 2 mV

Vac = 23 mV Vac = 29 mV

Reconfigurable logic universal gates: NOR and 
NAND configurations



NOR

0 0 | 1
1 0 | 0
0 1 | 0
1 1 | 0

NAND

� Switch from NOR to NAND for ∆Vac < 1 mV with a logic input
voltage 2 mV.

0 0 | 1
1 0 | 1
0 1 | 1
1 1 | 0

Reconfigurable logic universal gates: NOR and 
NAND configurations & truth tables



� Schmitt-Trigger simulation.

� All Parameters from the 
experiment.

� Excellent agreement !!

Reconfigurable logic universal gates: NOR and 
NAND configurations & ST simulations



�Robust response to the noise floor up to 100% of logic input

Vac = 24.6 mV Vac = 26.6 mV

Reconfigurable logic universal gates: 
NOR/NAND high noise robustness



Previous: 

• Universal logic gate switching 
controlled by the amplitude of the 
periodic forcing Vac. 

Now:

• Universal logic gate switching 
solely controlled by the noise floor.

• Two universal logic gates: 
NOR/NAND. 

Reconfigurable logic universal gates: Logic 
stochastic resonance 



For the logic NOR gate:

• The mean value difference is 
defined as 

<V>=V(I=0)−V(I=1)

For the logic NAND gate:

• The mean value difference 
is defined as 

<V>=V(I=1)−V(I=2)

Pnoise=0.9 nW the maximum 
corresponds to the logic NOR

Pnoise = 1.4 nW the maximum 
corresponds to the logic NAND

Reconfigurable logic universal gates: Benefit 
from noise in logic operations
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Stochastic resonance : A short introduction

L. Gammaitoni et al., “Stochastic resonance”, Reviews 
of Modern Physics, Vol. 70, No. 1, January 1998

The time-scale matching condition for 
stochastic resonance:

KTT 2=ω

Overdamped motion of a Brownian
particle in a bistable potential in the presence 
of noise and periodic forcing
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• RTD is bistable with 
stable outputs IH = 800 µA 
and IL = 270 µA.

• Works @ RT

• PVR ~ 3

• Noise induced 
switching between the 
two stable states 
appear.

• Time scale Tk is given 
by the inverse of the 
Kramer‘s rate.

Stochastic resonance in resonant tunneling 
diodes: Exploiting noise & nonlinearity



• For Pnoise < PSR no 
spectral component at f 
= 500 Hz is found.

• For Pnoise > PSR the 
spectral component at f 
= 500 Hz is still 
apparent.

• At the optimum noise level PSR, the spectral amplitude reaches a
maximum value and is decreasing apart from PSR.  

Recording of SR: Spectral response <V> versus 
the noise power added to the device 



Simulations (solid): 
- Ideal two state model (Schmitt Trigger) with parameters from the experiment.
- e.g. the barrier height was set to 16 mV as the hysteresis width of the device 
was 32 mV.

• For Pnoise < PSR the 
spectral component at f 
= 500 Hz is increasing.
• Maximum 
synchronization @ PSR 
=> SR.
• For Pnoise > PSR the 
spectral component is 
decreasing again. 

Stochastic resonance: Ac modulation with a 
frequency f  = 500Hz



• For Pnoise < PSR the 
spectral component at f 
= 500 Hz is increasing.

• Maximum 
synchronization @ PSR 
=> SR.

• For Pnoise > PSR the 
spectral component is 
decreasing again. 

Now:
• Change from ac modulation to a periodic light modulation.
• Energy of the light E = 2.73 eV (448nm) above the GaAs bandgap.
• Mechanically chopped light signal at f = 500 Hz.

Stochastic resonance: Periodic optical 
modulation with a frequency f  = 500Hz



At Pnoise = 32 nW the output follows almost perfectly the input 
signal !! 

Pnoise = 2 nW

Pnoise = 32 nW

Pnoise = 112 nW

Stochastic resonance: Time trace signals 



• The input and the working point 
voltages set the condition of the 
Y-branch switch.
• Self-gating leads to a bistable 
transfer characteristic.
• Noise induced oscillations occur
• All measurements @ 20K.

)sin()( 0, tVVtV ggg ωδ •+=
Input signal:

Weak periodic signal:

mVVg 3.1=δ

Stochastic resonance in three terminal electron 
waveguides: Noise activated switching 
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• For the unmodulated system, e.g. f = 0 Hz, the residence time 
distribution decays exponentially.

• The exponential decay is the inverse of the Kramer‘s rate and given 
by Tk:

sTK )044.0502.0( ±=

KTT 2=ωTime matching condition of SR:

From fitting:

Stochastic resonance in three terminal electron 
waveguides: Intrinsic (noise) timescale
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Stochastic resonance in three terminal electron 
waveguides: Residence time distributions

• For f < fSR the 
residence time 
distribution is strongly 
controlled by the noise

• For f > fSR odd 
multiples of the periodic 
forcing Tω occur:

2/)12( ωTnTn −=

At the optimum frequency f = 1 Hz the residence time distribution 
is almost perfectly restricted to the first peak. 



f = 0.1 Hz 

f = 1 Hz 

f = 1.8 Hz 

At f = 1 Hz the noise dynamics and the external (weak) periodic 
forcing are synchronized => Stochastic resonance.

Stochastic resonance in three terminal electron 
waveguides: Time traces 
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With n=1,2,…
And 0<α=0.2<0.25

• The strength P1 of the first peak at 
T
ω
/2 (the area under the peak) is 

a measure of the synchronization 
between the periodic forcing and 
the switching between the wells.

• P1 is defined as

Stochastic resonance in three terminal electron 
waveguides: Area under the first peak
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Noise Activated Nonlinear Dynamic Sensors 
(NANDs): A short introduction

From: L. Gammaitoni and A.D. Bulsara, 
„Noise Activated Nonlinear Dynamic 
Sensors “, PRL 88, 230601-1 (2002).

The response of <∆T> for large noise 
intensity σξ is (expanded to first order in ε 
(target signal):

The variable of interest is the residence time 
difference ∆T between the time spend in the 
two stable states TH,L with

∆T =TH-TL
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• The detector in biased in the strongly 
noise activated regime. 

• Switching between VH and VL solely 
controlled by the internal noise.

• Magnetic field is applied perpendicular 
to the motion of electrons.

• Measure the time spent in each of the 
two stable states:

Magnetic field sensors based on the residence 
time difference in electron waveguides 

LH TTT −=∆
• Output of the detector is the residence 

time difference:
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Increasing magnetic field: 

•The output Vbr decreases linearly down 
to a magnetic field threshold Bth. 
• Transitions between the two stable 
states occur within a magnetic field 
range ∆B.
•The output Vbr changed its stable state 
from Vbr = VH to Vbr = VL.

• The magnetic-field induced 
switching (between VH and VL) is 
associated with an interplay 
between a scattering asymmetry 
at the boundaries. [1]

[1] D. Hartmann et al., PHYSICAL REVIEW B 78, 113306 (2008).

Magnetic field sensors based on the residence 
time difference in electron waveguides 
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• The residence time TH (high state) is decreasing 
and TL (low state) is increasing with increasing B. 

• Output ∆T is a linear function of the magnetic 
field around the symmetric point ∆T = 0 s.

• Target signal (magnetic field) independent 
sensitivity. 

Magnetic field sensors based on the residence 
time difference in electron waveguides 
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• Double well potential with 
minima located at A and D.

• D is the energetic favorable 
point D with D < A.

• Consider two temperatures 
at the slopes Thot and Tcold
with Thot>Tcold.

Diffusion constants :

For systems subject to thermal noise, 
the Boltzmann factor is

V
exp( )

kT

−

For systems with mobility µ subject to drift 
and state dependent diffusion the 
Boltzmann factor is

exp( (q))−Ψ
with

Transport as a consequence of 
state-dependent diffusion

M. Büttiker, Z. Phys. B 68, 161 (1987).
R. Landauer, J. Stat. Phys. 53, 233 (1988).



With:

Transport as a consequence of 
state-dependent diffusion
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Ya. M. Blanter and M. Büttiker, Phys. Rev. Lett. 81, 
4040-4044 (1998).



Energy harvesting in nanoelectronic devices:
Optimal energy quanta to current conversion

Proposed by R. Sanchez and 
M. Büttiker, PRB 83, 085428 
(2011). 
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Every energy quantum of 
heat flow gets converted into 
a quantum of charge flow



• Growth, fabrication and transport properties of nan oelectronic 
devices
– Samples are based on GaAs/AlAs and grown by molecular beam epitaxy
– Dry and wet chemical etching is used to define the structures  

• Universal logic gate switching in resonant tunnelin g diodes (RTDs)  
– Two universal logic gates => NOR to NAND for ∆Vac ~ 0.1 mV 
– Logic stochastic resonance (LSR) with Pnoise ~nW

• Stochastic resonance in nanoelectronic devices
– SR @ f= 1Hz in electron waveguides: Tuning the periodic forcing 
– SR @ f = 500Hz in RTDs for ac and periodic optical modulation: Plight = 160nW

• Noise activated nonlinear dynamic sensors 
– Magnetic field sensor based on (bistable) electron waveguides

• Energy harvesting: The quantum harvester class
– Transport as a consequence of state dependent diffusion.
– Optimal energy to quanta conversion: A coupled QD system.

Summary
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Many thanks for your attention!


